Proof of the Double Bubble Conjecture in $\mathbf{R}^{\mathbf{n}}$

Ben Reichardt
Caltech

Double Bubble Theorem

- Theorem: The least-area way to enclose and separate two given volumes in $\mathbf{R}^{\mathbf{n}}$ is the standard double bubble.

- three spherical caps centered on the axis L , meeting at I20 degree angles

History

- Theorem: The least-area way to enclose and separate two given volumes in $\mathbf{R}^{\mathbf{n}}$ is the standard double bubble.
- Proof in \mathbf{R}^{2} by Foisy, Alfaro, Brock, Hodges, Zimba (1993)
- Proof for equal volumes in $\mathbf{R}^{\mathbf{3}}$ by Hass, Hutchings, Schlafly (1995)...

Hutchings Structure Theorem

- Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are rotationally symmetric about an axis L , and consist of "trees" of annular bands wrapped around each other.

Hutchings Structure Theorem

- Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are rotationally symmetric about an axis L , and consist of "trees" of annular bands wrapped around each other.

Hutchings Structure Theorem

- Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are rotationally symmetric about an axis L , and consist of "trees" of annular bands wrapped around each other.

Boundaries are constant-mean-curvature surfaces meeting at 120° angles.

Hutchings Structure Theorem

- Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are rotationally symmetric about an axis L , and consist of "trees" of annular bands wrapped around each other.
Boundaries are constant-mean-curvature surfaces meeting at 120° angles.
- Regions in the candidate minimizer may be disconnected!

Double bubble
Tree

History—Proof in $\mathbf{R}^{\mathbf{3}}$

- Proof in $\mathbf{R}^{\mathbf{2}}$ by Foisy, Alfaro, Brock, Hodges, Zimba (1993)
- Proof for equal volumes in \mathbf{R}^{3} by Hass, Hutchings, Schlafly (1995)
- Proof in $\mathbf{R}^{\mathbf{3}}$ by Hutchings, Morgan, Ritoré, Ros (2002)
- Hutchings bounds ('97) guarantee that larger region is connected and smaller region has at most two components, in $\mathbf{R}^{\mathbf{3}}$
- Proof is by eliminating as unstable nonstandard " $\mathrm{I}+\mathrm{I}$ " and " $\mathrm{I}+2$ " bubbles

History—Proof in $\mathbf{R}^{\mathbf{4}}$

- Proof in $\mathbf{R}^{\mathbf{2}}$ by Foisy, Alfaro, Brock, Hodges, Zimba (1993)
- Proof for equal volumes in $\mathbf{R}^{\mathbf{3}}$ by Hass, Hutchings, Schlafly (I995)
- Proof in $\mathbf{R}^{\mathbf{3}}$ by Hutchings, Morgan, Ritoré, Ros (2002)
- by eliminating " $|+|$ " and " $\mid+2$ " bubbles (trees with up to three nodes)
- Proof in \mathbf{R}^{4} by Reichardt, Heilmann, Lai, Spielman (2003)
- by eliminating " $I+k$ " bubbles-larger region is connected in \mathbf{R}^{4} (and in $\mathbf{R}^{\mathbf{n}}$ provided $\mathrm{v}_{1}>2 \mathrm{v}_{2}$)

Proof in $\mathbf{R}^{\mathbf{n}}, \mathbf{n} \geq \mathbf{3}$

- Proof in $\mathbf{R}^{\mathbf{3}}$ by Hutchings, Morgan, Ritoré, Ros (2002)
- by eliminating " $I+\mid$ " and " $I+2$ " bubbles (trees with up to three nodes)
- Proof in \mathbf{R}^{4} by Reichardt, Heilmann, Lai, Spielman (2003)
- by eliminating " $I+\mathrm{k}$ " bubbles-larger region is connected in \mathbf{R}^{4}
- Proof in $\mathbf{R}^{\mathbf{n}}$ is by eliminating as unstable all nonstandard " $j+k$ " bubbles
- component bounds, which worsen with n , aren't needed

Talk sketch

- Double Bubble Theorem
- History
- Hutchings Structure Theorem
- Proof sketch

- Instability by separation [HMRR ‘02]
- Elimination of (near) graph nonstandard bubbles
- Inductive reduction to (near) graph case

Instability by separation

- Definition: f: \{generating curves\} $\rightarrow \mathrm{L}$
- extend the downward normal at p until it hits L

Instability by separation

- Definition: f: \{generating curves\} $\rightarrow \mathrm{L}$
- extend the downward normal at p until it hits L
- Separation Lemma [HMRR $\left.{ }^{\prime} 02\right]:\left\{f^{-1}(x)\right\}$ cannot separate the generating curves

Case of graph generating curves

- Definition: f: \{generating curves\} $\rightarrow \mathrm{L}$, extend downward normal to hit L
- Separation Lemma: $\left\{f^{-1}(x)\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical) -want to find a "separating set"

Case of graph generating curves

- Definition: f: \{generating curves\} $\rightarrow \mathrm{L}$, extend downward normal to hit L
- Separation Lemma: $\left\{f^{-1}(x)\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical)-want to find a "separating set"
- Consider a leaf component...

Case of graph generating curves

- Definition: f: \{generating curves\} $\rightarrow \mathrm{L}$, extend downward normal to hit L
- Separation Lemma: $\left\{f^{-1}(x)\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical)-want to find a "separating set"
- Consider a leaf component...
- Separation Lemma $\Rightarrow f\left(\Gamma_{1}\right) \cap f\left(\Gamma_{4}\right)=\emptyset$
- $f\left(\Gamma_{1}\right)<f\left(\Gamma_{4}\right)$ clearly (in the pictured case)

Case of graph generating curves

- Separation Lemma: $\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical) -want to find a "separating set"
- Repeating leaf argument... get $f\left(\Gamma_{\text {leftmost }}\right)<f\left(\Gamma_{\text {rightmost }}\right)$

Case of graph generating curves

- Separation Lemma: $\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical) -want to find a "separating set"
- Repeating leaf argument... get $f\left(\Gamma_{\text {leftmost }}\right)<f\left(\Gamma_{\text {rightmost }}\right)$
- But $f\left(\Gamma_{\text {bottom }}\right)$ starts left of $\sup f\left(\Gamma_{\text {leftmost }}\right)$...

Case of graph generating curves

- Separation Lemma: $\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical) -want to find a "separating set"
- Repeating leaf argument... get $f\left(\Gamma_{\text {leftmost }}\right)<f\left(\Gamma_{\text {rightmost }}\right)$
- But $f\left(\Gamma_{\text {bottom }}\right)$ starts left of $\sup f\left(\Gamma_{\text {leftmost }}\right)$ and ends above inf $f\left(\Gamma_{\text {rightmost }}\right)$

Case of graph generating curves

- Separation Lemma: $\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical)-want to find a "separating set"
- Repeating leaf argument... get $f\left(\Gamma_{\text {leftmost }}\right)<f\left(\Gamma_{\text {rightmost }}\right)$
- But $f\left(\Gamma_{\text {bottom }}\right)$ starts left of sup $f\left(\Gamma_{\text {leftmost }}\right)$ and ends above $\inf f\left(\Gamma_{\text {rightmost }}\right)$
\therefore There is a $\Gamma_{\text {bottom }}, \Gamma_{\text {leftmost }}$ separating set! $\left(f\left(\Gamma_{\text {bottom }}\right) \cap f\left(\Gamma_{\text {leftmost }}\right) \neq \varnothing\right)$

Case of graph generating curves

- Separation Lemma: $\left\{f^{-1}(x)\right\}$ cannot separate the generating curves
- Assume that all pieces of the generating curves are graph above L (no piece turns past the vertical)-want to find a "separating set"
- Repeating leaf argument... get $f\left(\Gamma_{\text {leftmost }}\right)<f\left(\Gamma_{\text {rightmost }}\right)$
- But $f\left(\Gamma_{\text {bottom }}\right)$ starts left of sup $f\left(\Gamma_{\text {leftmost }}\right)$ and ends above inf $f\left(\Gamma_{\text {rightmost }}\right)$
\therefore There is a $\Gamma_{\text {bottom }}, \Gamma_{\text {leftmost }}$ separating set! $\left(f\left(\Gamma_{\text {bottom }}\right) \cap f\left(\Gamma_{\text {leftmost }}\right) \neq \varnothing\right)$
\therefore By the Separation Lemma, nonstandard graph bubbtes are not stable. \square

Proof sketch

- Instability by separation [HMRR ‘02]
- Elimination of graph nonstandard bubbles
- Inductive reduction to graph case
- Starting at the leaves, and moving toward the root of the component stack, show that generating curves must be graph above L

Tree

Generating curves

Case analysis

- Base case: Need to eliminate 8 non-graph leaf component configurations

Case analysis

- Base case: Need to eliminate 8 non-graph leaf component configurations

- (divided by vertex angles)

Case analysis

- Base case: Need to eliminate 8 non-graph leaf component configurations

- [RHLS ‘03]-style
arguments eliminate four cases

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...
- But we can't!

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...
- But we can't!

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...
- But we can't!

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set...
- But we can't!

Proof sketch

- Instability by separation [HMRR ‘02]
- Elimination of graph nonstandard bubbles
- Inductive reduction to (near) graph case
- Starting at the leaves, and moving toward the root of the component stack, show that generating curves must be (near) graph above L

- But this doesn't work! Arguments of [RHLS ‘03] alone—eliminating "I +k " bubbles-do not suffice to eliminate " $j+k$ " bubbles. Need to know more about the generating curves...

Hutchings Structure Theorem

- Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are rotationally symmetric about an axis L , and consist of "trees" of annular bands wrapped around each other.
Boundaries are constant-mean-curvature surfaces meeting at 120° angles.

(also catenoid, hyperplane)

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set
- Because Гi generates a constant-mean-curvature surface, this picture is impossible...
- We show that ray R stays right of Γ_{1}

If Γ_{1} is an unduloid:

- Unduloid Lemma: Circles tangent to an unduloid, and centered on the axis L, stay beneath it.

Unduloid Lemma

- Unduloid Lemma: Circles tangent to an unduloid, and centered on the axis L, stay beneath it.

If Γ_{I} is a nodoid:

- Nodoid Lemma: Circles tangent to nodoid, and passing through same angle over same arclength, stay beneath nodoid.

Case "(0,2)"

- To eliminate this case, we'd like to show that Γ_{2} has an internal separating set
- Because Гi generates a constant-mean-curvature surface, this picture is impossible...
- We show that ray R stays right of Γ_{1}

Case analysis

- Need to eliminate 8 nongraph component configurations

Case analysis

- Need to eliminate 8 nongraph component configurations

Proof sketch

- Instability by separation [HMRR ‘02]
- Elimination of graph nonstandard bubbles
- Inductive reduction to (near) graph case
- Starting at the leaves, and moving toward the root of the component stack, show that generating curves must be (near) graph above L

Double Bubble Theorem

- Theorem: The least-area way to enclose and separate two given volumes in $\mathbf{R}^{\mathbf{n}}$ is the standard double bubble.

- three spherical caps centered on the axis L , meeting at I20 degree angles

