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• Theorem: The least-area way to enclose and separate two given volumes 
in Rn is the standard double bubble.  

• three spherical caps centered on the axis L, meeting at 120 degree angles
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• Theorem: The least-area way to enclose and separate two given volumes 
in Rn is the standard double bubble.  

• Proof in R2 by Foisy, Alfaro, Brock, Hodges, Zimba (1993)

• Proof for equal volumes in R3 by Hass, Hutchings, Schlafly (1995)…

History



• Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are 
rotationally symmetric about an axis L, and consist of “trees” of annular 
bands wrapped around each other.
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• Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are 
rotationally symmetric about an axis L, and consist of “trees” of annular 
bands wrapped around each other.  

Boundaries are constant-mean-curvature surfaces meeting at 120˚ angles.
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• Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are 
rotationally symmetric about an axis L, and consist of “trees” of annular 
bands wrapped around each other.  
Boundaries are constant-mean-curvature surfaces meeting at 120˚ angles.

• Regions in the candidate minimizer may be disconnected!

Hutchings Structure Theorem
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• Proof in R2 by Foisy, Alfaro, Brock, Hodges, Zimba (1993)

• Proof for equal volumes in R3 by Hass, Hutchings, Schlafly (1995)

• Proof in R3 by Hutchings, Morgan, Ritoré, Ros (2002)

• Hutchings bounds (‘97) guarantee that larger region is connected and 
smaller region has at most two components, in R3 

• Proof is by eliminating as unstable nonstandard “1+1” and “1+2” bubbles

History—Proof in R3

L



• Proof in R2 by Foisy, Alfaro, Brock, Hodges, Zimba (1993)

• Proof for equal volumes in R3 by Hass, Hutchings, Schlafly (1995)

• Proof in R3 by Hutchings, Morgan, Ritoré, Ros (2002)

• by eliminating “1+1” and “1+2” bubbles (trees with up to three nodes)

• Proof in R4 by Reichardt, Heilmann, Lai, Spielman (2003)

• by eliminating “1+k” bubbles––larger region is connected in R4 (and in 
Rn provided v1 > 2 v2)

History—Proof in R4
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• Proof in R3 by Hutchings, Morgan, Ritoré, Ros (2002)

• by eliminating “1+1” and “1+2” bubbles (trees with up to three nodes)

• Proof in R4 by Reichardt, Heilmann, Lai, Spielman (2003)

• by eliminating “1+k” bubbles––larger region is connected in R4 

• Proof in Rn is by eliminating as unstable all nonstandard “j+k” bubbles

• component bounds, which worsen with n, aren’t needed

Proof in Rn, n≥3
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• Double Bubble Theorem

• History

• Hutchings Structure Theorem

• Proof sketch

• Instability by separation [HMRR ‘02] 

• Elimination of (near) graph nonstandard bubbles

• Inductive reduction to (near) graph case
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• Definition: f: {generating curves} → L

• extend the downward normal at p until it hits L

Instability by separation
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• Definition: f: {generating curves} → L

• extend the downward normal at p until it hits L

• Separation Lemma [HMRR ‘02]: {f-1(x)} cannot separate the generating 
curves

Instability by separation
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• Definition: f: {generating curves} → L, extend downward normal to hit L

• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

Case of graph generating curves
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• Definition: f: {generating curves} → L, extend downward normal to hit L

• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

• Consider a leaf component…
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• Definition: f: {generating curves} → L, extend downward normal to hit L

• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

• Consider a leaf component…

• Separation Lemma ⇒ 

•                          clearly (in the pictured case)f(Γ1) < f(Γ4)

Case of graph generating curves
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• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

• Repeating leaf argument… get f(Γleftmost) < f(Γrightmost)
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ΓrightmostΓleftmost
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• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

• Repeating leaf argument… get f(Γleftmost) < f(Γrightmost)

• But f(Γbottom) starts left of sup f(Γleftmost)…
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• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece 
turns past the vertical)—want to find a “separating set”

• Repeating leaf argument… get f(Γleftmost) < f(Γrightmost)

• But f(Γbottom) starts left of sup f(Γleftmost) and ends above inf f(Γrightmost)
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Γbottom

L

• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece turns 
past the vertical)—want to find a “separating set”

• Repeating leaf argument… get f(Γleftmost) < f(Γrightmost)

• But f(Γbottom) starts left of sup f(Γleftmost) and ends above inf f(Γrightmost)

∴ There is a Γbottom, Γleftmost separating set!  (f(Γbottom)∩f(Γleftmost)≠∅)

Case of graph generating curves
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Γbottom

L

• Separation Lemma: {f-1(x)} cannot separate the generating curves

• Assume that all pieces of the generating curves are graph above L (no piece turns 
past the vertical)—want to find a “separating set”

• Repeating leaf argument… get f(Γleftmost) < f(Γrightmost)

• But f(Γbottom) starts left of sup f(Γleftmost) and ends above inf f(Γrightmost)

∴ There is a Γbottom, Γleftmost separating set!  (f(Γbottom)∩f(Γleftmost)≠∅)

∴ By the Separation Lemma, nonstandard graph bubbles are not stable.☑

Case of graph generating curves

f(Γrightmost)f(Γleftmost)

ΓrightmostΓleftmost



• Instability by separation [HMRR ‘02]

• Elimination of graph nonstandard bubbles

• Inductive reduction to graph case

• Starting at the leaves, and moving toward the root of the component 
stack, show that generating curves must be graph above L

Proof sketch

Tree Generating curves



Case analysis

• Base case: Need to eliminate 
8 non-graph leaf component 
configurations



Case analysis

• Base case: Need to eliminate 
8 non-graph leaf component 
configurations

• (divided by vertex angles)



Case analysis

• Base case: Need to eliminate 
8 non-graph leaf component 
configurations

• [RHLS ‘03]-style 
arguments eliminate four 
cases



• To eliminate this case, we’d 
like to show that Γ2 has an 
internal separating set…

Case “(0,2)”
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• To eliminate this case, we’d 
like to show that Γ2 has an 
internal separating set…

• But we can’t!
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• Instability by separation [HMRR ‘02]

• Elimination of graph nonstandard bubbles

• Inductive reduction to (near) graph case

• Starting at the leaves, and moving toward the root of the component 
stack, show that generating curves must be (near) graph above L

• But this doesn’t work!  Arguments of [RHLS ‘03] alone—eliminating “1+k” 
bubbles—do not suffice to eliminate “j+k” bubbles.  Need to know more 
about the generating curves…

Proof sketch



• Theorem [Hutchings, 1997]: Only possible nonstandard minimizers are 
rotationally symmetric about an axis L, and consist of “trees” of annular 
bands wrapped around each other.  
Boundaries are constant-mean-curvature surfaces meeting at 120˚ angles.

Hutchings Structure Theorem
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• To eliminate this case, we’d 
like to show that Γ2 has an 
internal separating set

• Because Γ1 generates a 
constant-mean-curvature 
surface, this picture is 
impossible…

• We show that ray R 
stays right of Γ1 

Case “(0,2)”
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• Unduloid Lemma: Circles 
tangent to an unduloid, and 
centered on the axis L, stay 
beneath it.

If Γ1 is an unduloid:

L

Γ1
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• Unduloid Lemma: Circles 
tangent to an unduloid, and 
centered on the axis L, stay 
beneath it.

Unduloid Lemma
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• Nodoid Lemma: Circles 
tangent to nodoid, and passing 
through same angle over same 
arclength, stay beneath nodoid.

If Γ1 is a nodoid:

R



• To eliminate this case, we’d 
like to show that Γ2 has an 
internal separating set

• Because Γ1 generates a 
constant-mean-curvature 
surface, this picture is 
impossible…

• We show that ray R 
stays right of Γ1 

Case “(0,2)”
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Figure 18. Different (mp,mq) component cases we consider. See
also Figure 17. Case (i, j) is symmetrical under relabeling to (j −
3, i− 3), and under horizontal reflection to (−j,−i).
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Figure 19. Left: A right-side-up, near-graph component stack
might be placed on Γ3 in Figure 18(b) if Γ3 is an unduloid. Right:
We show that nodoid Γ2 has an internal separating set by horizon-
tally translating the ray L2(q) =

−−−→
q l2(q) to the piece of arc leaving

p, then applying Lemma 5.1.

Case analysis

• Need to eliminate 8 non-
graph component 
configurations
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• Instability by separation [HMRR ‘02]

• Elimination of graph nonstandard bubbles

• Inductive reduction to (near) graph case

• Starting at the leaves, and moving toward the root of the component 
stack, show that generating curves must be (near) graph above L

Proof sketch



• Theorem: The least-area way to enclose and separate two given volumes 
in Rn is the standard double bubble.  

• three spherical caps centered on the axis L, meeting at 120 degree angles
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